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Abstract 
A Condition-Based Maintenance (CBM) program calls for transitioning from making time 
based part replacement decisions to performing maintenance upon evidence of need. For the 
U.S. Army’s CBM+ plan this entails eliminating the use “time before overhaul” (TBO) 
definitions currently driving vehicle component maintenance schedules. Although Health and 
Usage Monitoring Systems (HUMS) have the potential to support this goal, their ability to 
diagnose component faults early is limited, and implementation of prognostics is rare. These 
limitations are driven partly by the sensitivity of diagnostic processes to signal noise and 
changes in operating conditions. A representative example is a bearing in the oil cooling 
subsystem of H-60 helicopters. This paper discusses certain signal processing techniques to 
enhance early detection capabilities, reduce false alarms in diagnosis, and provide a basis for 
prognostics. Actual H-60 bearing vibration data and surrogate-bearing test rig data are utilized 
to illustrate the advantages of the techniques presented. 
 
Keywords:  air vehicle diagnostics, feature fusion, diagnostic enhancement, prognostics, air 
vehicle HUMS, helicopter drive train monitoring. 
 
 

Introduction 
 
In recent years, the U.S. Army has witnessed various helicopter component failures that are 
currently driving the need for improved health monitoring and fault prediction that will be 
implemented under the broader initiative for Condition Based Maintenance (CBM) of the U.S. 
Department of Defense, known as CBM+. The fault diagnosis and failure prognosis problem 
for critical helicopter parts/components has been addressed over the years via a variety of 
model-based and data-driven approaches. Research in this area has focused primarily on the 
analysis of vibration data and the derivation of condition indicators, component seeded fault 
testing and detection/identification of incipient failures. Existing hardware/software health 
monitoring systems, such as VMEP/MSPU [1] and IMD-HUMS/IVHMS [2], collect vibration 
and other pertinent flight regime data, carry out data pre-processing, and attempt to detect a 
fault condition using condition or health indicators derived via data processing algorithms. 
However, with prognostics being an underdeveloped element of CBM and Prognostic and 
Health Management (PHM) systems, attempts at predicting the remaining useful life of failing 
components, as well as developing supporting technologies that enhance detection capabilities 
have been limited in number and scope. 
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To specifically address improvement of fault detection and failure prediction methods, the 
Army Research Laboratory, Impact Technologies, LLC, and the Georgia Institute of 
Technology are currently working collaboratively to develop, test and evaluate modular 
software components that provide enhancements to diagnostic systems already in service, as 
well as add failure prognosis capabilities for critical Army aircraft components. This work is 
being carried out as part of the three-year “Air Vehicle Diagnostic and Prognostic 
Improvement Program” (AVDPIP), and its ultimate goal is to allow the modular software 
components to complement existing Army Digital Source Collector (DSC) systems so as to 
provide the Army with tools and an architecture that support the CBM+ goals of improving 
readiness, safety, and maintainability of assets. Use of these technologies should warn 
operators and field commanders of impending failure conditions and assist maintainers in 
optimizing aircraft repair, maintenance and overhaul practices. 
 
Since the design of an effective prognostic system is one of its primary objectives, the 
AVDPIP program is developing what is here referred to as “health based” prognostic 
algorithms, which we identify as those preceded by diagnostic operations that are used to 
determine the health state of a system and establishing the amount of damage present in a 
degrading component. This is in contrast to performing what we refer to as “usage based” 
prognostics, where the state of the component is not regarded before predicting life 
remaining; instead,  usage based prognostic systems keep track of all use of the system and 
determine life remaining at a given instant by subtracting accounted-for use from a pre-
specified life limit.  
 
In general, a CBM program calls for transitioning from time based part replacement decisions 
to performing maintenance upon evidence of need. This requirement is more wholly fulfilled 
by the joint operation of diagnostic and health based prognostic systems. For the U.S. Army’s 
CBM+ plan there is interest in implementing fault detection and PHM algorithms that 
eliminate burdensome inspections and use of “time before overhaul” (TBO) definitions, which 
currently drive maintenance and retirement schedules of certain mechanical components in 
vehicles. Clearly, the first step in reducing dependency on flight hour definitions is to 
implement effective fault detection technologies. It is widely documented how detecting 
serious faults in a variety of rotorcraft components before they fail completely is possible, 
most notably utilizing vibration based diagnostics in aircraft Health and Usage Monitoring 
Systems (HUMS) such as the Army’s DSC systems currently in use. Arguably, however, the 
ability of some of these techniques to diagnose component faults in their early stages in 
vehicle drive systems is limited, and, as will be discussed below, this limitation presents an 
opportunity to implement advanced detection techniques. Another means to support the 
elimination of flight hour-based maintenance decisions is the implementation of health based 
prognostics. However, the task of prognosis is often underrepresented in the field, partly 
because effective health based prognostic systems require more robust and reliable 
diagnostics of incipient faults than is sometimes available. 
 
The ability of diagnostic systems to detect early-stage faults is limited to some extent by the 
sensitivity of data processing, fault detection, root cause classification to signal noise, specific 
component fault modes, and variations in environmental and operating conditions (such as 
loads, speeds, flight regimes, etc.) [3]. Thus, there exists the potential to improve vehicle 
health monitoring algorithms such that they become more insensitive to signal noise and to 
changes in environmental/operating conditions. Since early detection is a key requirement for 
the implementation of effective prognostic algorithms, techniques that can mitigate the effects 
of noise and environmental/operating conditions, as well as perform fault identification, pose 
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themselves as a prerequisite for making prognostic technologies more ubiquitous. This paper 
reviews some considerations and data fusion techniques to support the aforementioned goals. 

 
 

Application Example: H-60 Helicopter Bearings 
 
A representative example of the challenges described above is given by a bearing inside the 
oil cooling subsystem of the H-60 series of helicopters currently in service for the U.S. Army. 
The Army and Sikorsky Aircraft Corporation have identified the Oil Cooler Fan Assembly as 
a candidate for CBM maintenance, so engineers and program managers are working together 
to incrementally increase the TBO life limit until it is no longer necessary. For example, 
reference [4] identifies methods for gradually increasing the TBO and then moving the oil 
cooler to on-condition maintenance by considering the different fault modes of the 
components of oil cooler assemblies, such as the bearings, shafts, splines, housings, and fan 
blades. Of all these components, the present paper is focusing on the fan support bearings. 
The transition from flight hour-based (using TBO definitions) to condition-based maintenance 
for this bearing is of interest due to the criticality of the component and the relatively high 
incidence of replacements and faults [5]; additionally, the bearings are in limited supply and 
offer potential availability of data collected from a variety of helicopters in service [4]. 
 
Based upon a CBM credit requirements document published by the FAA (AC29-2C MG 15), 
ref. [4] defines requirements for the Army to approve the elimination of use of the UH-60 Oil 
Cooler Fan Assembly TBO, thereby moving to on-condition health monitoring. An important 
consideration proposed therein is the use of three different categories (light, moderate or 
severe) for classifying damage corresponding to different fault modes of components based on 
experience and UH-60 Maintenance Manuals.  Table 1, which has been abridged from [4], 
presents the corresponding classification for just the bearings and the shaft as an example. 
 

Table 1. Damage and Fault Classification Guide (Abridged from [4]). 

Component Fault 
Damage Classification 

Light Moderate Severe 

Bearing 

Corrosion Up to 30% surface 
area 30% to 60% surface area 60% or greater surface 

area 

Spall Up to 30% surface 
area 30% to 60% surface area 60% or greater surface 

area 

Fracture Less than 
20% 20% to 50% Greater than 

50% 

Looseness 90% to 100% of the 
allowable 100% to 150 % of the allowable 150% or greater of the 

allowable 

Wear 90% to 100% of the 
allowable 100% to 150 % of the allowable 150% or greater of the 

allowable 

Shaft 

Corrosion Up to 10% surface 
area 10% to 20% surface area 20% or greater surface 

area 

Fracture Less than visible Any visible crack up to 10% of 
circumference or 1 in length 

10% of circumference or 
1 in length 

Looseness 90% to 100% of the 
allowable 100% to 150 % of the allowable 150% or greater of the 

allowable 

 

A key enabling factor of the safe transition to effective CBM can clearly result from the 
implementation of a bearing life prognostic system. However, as mentioned earlier, to be most 
effective, the operation of such a prognostic system must be preceded by, and integrated with, 
enhanced diagnostic algorithms capable of detecting a fault in its early stages of development. 
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These diagnostic operations should perform robustly even in the presence of the multiple 
kinds of disturbances affecting data acquired by DSC sensors. 
 
Oil Cooler Assembly of the H-60 
 
The oil cooler is a core component of the H-60 tail rotor drive train assembly whose primary 
function is to cool the helicopter transmission lubricant while transmitting power to the tail 
rotor drive shaft through the oil cooler shaft. It sits in the downdraft of the main rotor wash, 
and uses a fan to force air through a radiator for efficient cooling. The tail rotor drive train 
consists of a drive shaft that transfers torque from the main transmission to the oil cooler drive 
shaft and then to a series of drive shaft sections and the intermediate gear box before 
propelling the tail rotor gear box. This arrangement is shown in Fig. 1. 
  

 
 

Fig. 1: H-60 drive train assembly (From “Technical Manual, Aviation Unit and Intermediate 
Maintenance for Army Models UH60A, UH60L, and EH60A Helicopters”, U.S. Army TM 1-

1520-237-23-4, May 29, 1998) 
 
The components of the oil cooler, illustrated in Fig. 2, are centered on a splined shaft 
supported at the front by two shielded cartridge bearings, and in the rear by a viscous damper 
bearing. The oil cooler fan assembly consists of a multi-bladed rotor housed inside a 
concentric stator. The shields of the bearings contain the grease supply inside the bearings and 
protect the latter against contaminants such as dust and debris. 
  

 
 

Fig. 2: H-60 oil cooler components. 
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Fault analysis of the shielded cartridge bearings supporting the fan of the oil cooler carries 
high relevance since failure of these components may cause the tail rotor drive shaft to shear, 
resulting in power loss to the tail rotor. The fan support bearings are deep-groove, grease-
packed ball bearings. They are standard mobility application bearings with an inner bore 
diameter of approximately 2 inches, 10 balls and specified to ABEC-1. A pair of identical 
bearings (fore/aft) is present on the fan shaft of the oil cooler assembly. Bearings with heavily 
contaminated grease and exhibiting corrosion on the raceways, balls and cage surfaces have 
been found in the field in multiple instances (see, for example, [5]), particularly on the front 
cartridge bearing. Grease breakdown and wash-out are also fault modes of concern. Fig. 3 
illustrates some of these fault modes. 
 

 
       

Fig. 3: Oil cooler bearing degradation: corroded inner raceway (left) and outer raceway 
(middle), and damaged bearing ball (right). 

 
A 2000-flight hour life limit was originally imposed on the bearing, based upon an assumed 
yearly flying-hour program and a 5-year shelf life of the grease. It is believed that such a 
number is overly conservative, because of increased OPTEMPO and since operating 
temperatures drive out water vapor, and failure is unlikely under the observed corrosion 
conditions and the support of the back bearing. Still, with no substantial backing of this claim, 
the Army is concerned with the prospect of having to service a multiplicity of platforms as the 
2000-hour life limit approaches. Due to the prospects for life extension, there is great 
potential benefit in the development of a reliable monitoring and condition assessment system 
for the oil cooler bearings. 
 
Bearing Fault Effects and Monitoring 
 
The phenomenon of rolling contact fatigue has been long known to be a leading contributor to 
the failure of rolling element bearings. This failure mode is instigated by the cycling loading 
profile generated by the Hertzian contact forces rotating circumferentially about the 
ball/raceway during bearing motion. The resulting sub-surface stress cycles eventually lead to 
the flaking away of raceway material referred to as “spalling.” Once a spall is present on the 
bearing raceway, the continued stress cycles will result in the loss of additional material and 
growth of the spall. Once a raceway spall reaches a size deemed harmful to the safe, reliable 
operation of the system, the bearing is said to be failed. 
 
Previous bearing studies and practical usage experience have indicated that the presence of 
raceway surface corrosion can greatly accelerate the spalling process. The accepted physical 
explanation for this effect is that the formation of corrosive pitting on the raceway provides an 
ideal location for spall initiation. It is also very likely that the brittling effects of corrosive 
degradation accelerate the rate of spall growth. The combined corrosive/fatigue degradation 
of roller bearings is a failure mode of great interest in bearing systems that are exposed to 
environmental conditions such as moisture and humidity that instigate the corrosive process. 
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Helicopter drive train and accessory bearings are particularly susceptible to this failure mode, 
and the H-60 oil cooler fan bearings are no exception. These components can operate in 
highly corrosive environments, and events like salt water induction or depot washdowns can 
lead to high levels of corrosive degradation. There is the potential for this corrosion to 
contribute to the early spalling and eventual failure of the bearing. As mentioned earlier, this 
component has been deemed a good candidate for the study and development of bearing 
diagnostic enhancement technologies and health based prognostics, and the failure mode 
described above is the focus of this paper. 
 
The fault modes of the oil cooler bearing described have been shown to be detectable through 
vibration analysis [6]. The predominant sensing scheme consists of accelerometers mounted 
on the oil cooler housing. Vibration data for bearing fault detection consists of time series of 
accelerometer readings. When a spall has initiated, bearing specific frequencies associated 
with the location of the defect are excited. However, for the case of corrosion, it is expected 
that multiple frequencies, or even wideband excitation, will be present. The amplitude and 
time duration of the defect frequency are expected to be indications of defect severity. 
Various features or condition indicators, both in the time and frequency domain, are expected 
to serve as a means for detecting these faults, in agreement with standard vibration based 
bearing health monitoring. 
 
Example Bearing Vibration Data 
 
The present paper is focusing on two sets of bearing vibration data to illustrate typical 
diagnostic procedures as well as some of the enhancements currently being developed under 
the AVDPIP program: (1) samples of actual aircraft data provided by the U.S. Army, and (2) 
bearing vibration data generated by Impact Technologies through its in-house high-speed 
bearing test rig. 
 
The first data set corresponds to the vibration signals of an oil cooler fan support bearing from 
an H-60 helicopter in recent service. The bearing vibration exhibited abnormal, increasing 
levels on multiple condition indicators calculated by the VMEP DSC system. The bearing was 
eventually replaced (in June of 2007), as confirmed by the logistics records of the U.S. Army.  
The second data set of focus in this paper corresponds to vibration data collected from a 
bearing test rig. This data corresponds to an industrial bearing exhibiting a progressing spall. 
This bearing is being considered as a surrogate for illustrative purposes, since it provides 
sufficient data to illustrate some of the techniques discussed in the present document. 
 

 
Diagnostic Enhancement Algorithms 

 
As described earlier, to arrive at an architecture that offers reliable fault detection and 
accurate assessments of the remaining useful life of the components, enhanced diagnostic and 
prognostic algorithms must be implemented. The AVDPIP program is thus focusing on 
developing a set of software components that provide diagnostic enhancements and failure 
prognosis algorithms [7]. The effectiveness of these components will be tested initially on 
diagnosing and prognosticating damage on oil cooler bearings. Although these developments 
are currently ongoing, this paper reports on progress made and some preliminary results on 
certain diagnostic enhancements being developed. The two sets of vibration data described 
earlier (DSC bearing vibration and surrogate bearing test data) are thus used to illustrate the 
application and effectiveness of some of the diagnostic enhancement techniques under 
development. 
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The main goal of the AVDPIP program is not to develop an entirely new diagnostic system, 
but rather to develop techniques that can be utilized by the Army to improve the performance 
of their diagnostic systems already in use. The techniques listed below were thus implemented 
and have been used to obtain the results reported in later sections 
. 
• ImpactEnergy™ Shock Pulse Amplification software, utilizing a multi-step signal 

processing routine prior to feature extraction that increases the visibility of shock-pulse 
events indicative of specific bearing faults, thus uncovering frequency spectrum peaks that 
are otherwise hidden in the broadband spectrum, and allowing for detection of faults in their 
incipient state. 

• Use of an Active Band Selection (ABS) algorithm, which maximizes fault detection by 
using techniques to identify the best regions of the broadband spectrum to perform fault 
frequency demodulation (potential system resonances). 

• Feature fusion techniques to combine multiple feature values into a single indicator that 
maximizes fault class separation, increases fault detection confidence and simplifies 
threshold metrics. 

• Sensor fusion techniques to combine the vibration signatures of multiple sensors to decrease 
the effects of random noise and increase the visible of subtle signs of fault. 

• A methodology to detect as early as possible with specified degree of confidence and 
prescribed false alarm rate an anomaly or novelty (incipient failure) [8]. 

 
A hybrid and systematic approach to sensing, data processing, fault feature extraction, fault 
diagnosis, and failure prognosis has been utilized with the two vibration data sets of focus in 
this paper. The system architecture contains generic components/algorithms building on 
model based and data driven methodologies that will eventually be transferable to other 
critical helicopter systems/components, as illustrated in Fig. 4. 
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Fig. 4: Overview of the technical approach of the AVDPIP program. 
 

While the oil cooler bearing example was used to demonstrate the developments and 
achievements of the base period of performance of AVDPIP, the algorithms and 
methodologies for performing enhanced feature extraction and fusion, developing and 
combining data-driven and model-based approaches for system health assessments, and 
managing uncertainty, will be transferable to a wide variety of components and platforms. 
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Example of Diagnostic Enhancements using Bearing Vibration Data 
 
The techniques discussed above were applied to the two bearing vibration datasets of focus. 
The first dataset was obtained from an H-60 rotorcraft that experienced an oil cooler related 
event occurring around the 2006 to 2007 timeframe. Unfortunately the available maintenance 
information did not provide specific indication of the motivation for this action. Since this 
rotorcraft data example lacks ground truth information as to the nature of the fault and the 
aircraft data only includes one sensor, results from a second bearing dataset are presented to 
further demonstrate the techniques reviewed in this paper. Such second dataset was generated 
on an experimental test stand using a surrogate bearing with data from three accelerometers. 
 
H-60 Dataset 
 
The ImpactEnergy™ software package was applied to the H-60 dataset. A full feature set was 
calculated that included statistical time domain metrics and frequency domain energy based 
quantities. For the purpose of comparison, a set of conventional features were derived using 
the raw vibration data prior to the data processing operations.  
  
Fig. 5 provides feature trend plots for the RMS value of both the conventional broadband and 
ImpactEnergy conditioned vibration data. Note that all feature values have been normalized 
on a 0-1 scale. Both of the feature plots clearly demonstrate a generally increasing trend of 
RMS values with a large jump in magnitude experienced in mid 2006. The feature values 
obtained after the ImpactEnergy processing experience lower levels of variance than those 
from the conventional domain. This effect is most clearly observed in the earlier, presumed 
healthier data. 
 

     
 

Fig. 5: RMS Trends for H-60 Vibration Data. 
 
While the exact location and nature of the event that instigated the vibration signature change 
is unknown, the inner race fault frequency (Fig. 6) provides a clearer trend than any of the 
other component frequencies (outer race, ball pass, cage). Due to the relatively low frequency 
resolution caused by the short duration of the time sample, it is unclear if this fault frequency 
response is due to a fault condition located on the inner race or merely a general increase in 
the energy recorded by the accelerometer. The resulting feature trends again demonstrate that 
the ImpactEnergy process reduces the feature variance observed in the early time samples. 
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Fig. 6: Inner Race Trends for H-60 Vibration Data. 
 
Surrogate Test Bearing Dataset 
 
The dataset obtained from the Impact test rig provides the opportunity to better demonstrate 
some of the diagnostic enhancements presented in this paper. This data source has ground 
truth information that can be used to identify baseline, incipient fault, and progressed fault 
data. Also, the presence of multiple accelerometers creates the opportunity for sensor fusion 
techniques. 
 
The Active Band Selection (ABS) algorithm was applied to the bearing vibration data. In Fig. 
7 the feature results for the ABS algorithm are presented for a range of potential carrier 
frequencies. The analysis identified six potential frequencies to use for the center frequency of 
the ImpactEnergy demodulation process. System knowledge was used to eliminate four of 
these frequencies that were known to be in regions where noise was likely to distort feature 
extraction results. The leading candidate of the remaining frequencies, 23.5 kHz, was used for 
all ImpactEnergy feature extraction. 
 

 
 

Fig. 7: ABS Feature Results. 
 

In this case, the fault was clearly identified as a spall located on the inner race of the bearing. 
Therefore, the inner race fault frequency would be expected to be a key piece of evidence for 
fault detection. Fig. 8 provides the inner race fault feature trends obtained for the conventional 
and ImpactEnergy spectrums. Again, all feature values are normalized on a 0-1 scale. While 
the conventional feature provides good indication of the progressed fault condition, the 
resulting detection threshold results in several cases of false alarms and missed detection. The 
feature value trend obtained after the signal processing process provides clear separation of 
the baseline, incipient fault and progressed fault classes. As illustrated in the trend plot, 
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thresholds can be created for this feature that provide fault detection without error as well as a 
fault severity assessment. 
  

 
 

Fig. 8: Effect of IE Processing on Detection. 
 

To further improve the performance of the inner race feature, feature fusion was used to 
combine the three best performing features into a single health index. Due to the small 
number of data samples available to refine the fused feature, a simple linear projection was 
created using principal component analysis (PCA). This technique of linear algebra reduces 
data dimensionality while retaining the most critical information. The resulting fused feature 
(Fig. 9) has lower feature variance for each of the three classes than is observed in the inner 
race feature alone. 
 

 
 

Fig. 9: Fused Feature Trend Plot. 
 
Finally, sensor fusion was attempted to further enhance the fault response of the inner race 
feature. The bearing test rig collects sensor data in three locations. Two of these 
measurements are taken in close proximity to the test specimen. The third accelerometer is 
located far from the test specimen in close proximity to another bearing. It is not expected that 
this distant accelerometer would provide useful information about subtle faults present in the 
test bearing. All features presented so far were derived from the radial sensor near the 
specimen. To demonstrate sensor fusion, three techniques: beamforming, principal component 
analysis and the SUMPLE algorithm were applied to the time domain data from the two 
closest accelerometers [9]. 
 
Beamforming is a process of concentrating an array of signals (typically sounds) coming from 
only one particular direction, where signals of the same carrier frequency from other 
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directions can be rejected without the need to reposition or move any receiving sensors [10]. 
Fig. 10 shows a beamforming procedure that can be implemented for sensor-level fusion.  
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Fig. 10: Beamforming Process. 
 
Principal Component Analysis (PCA) is a well-documented technique of linear algebra that 
reduces data dimensionality while retaining the most critical information [9]. Lastly, 
SUMPLE is a digital signal processing algorithm used as a means of combining the outputs of 
signals from multiple receivers in a large array for the purpose of receiving and increasing the 
signal-to-noise ratio of a weak signal transmitted by a single distant source [9,11]. The 
SUMPLE algorithm is illustrated in Fig. 11. 
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Fig. 11: SUMPLE Algorithm Process. 

 
An example of resulting feature trends obtained from applying each of the three 
aforementioned fusion techniques are presented in Fig. 12. The inner race feature extracted 
from the radial sensor only is provided for reference purposes. 
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Fig. 12: Inner Race Feature Sensor Fusion Results. 
 

The results show that there was no observed benefit from sensor fusion using any of the three 
techniques. In this case the information gained from the axial sensor does not provide 
additional evidence of the fault condition. Note that the beamforming and SUMPLE results 
display the undesirable effect of a slight increase in feature variance. These results 
demonstrate that the benefit of sensor fusion is highly dependent on the quality of the 
information obtained from each individual sensor, and if not done carefully can actually 
decrease the usefulness of the extracted features. 
 

 
Use of Diagnostic Enhancements in Support of Prognostics 

 
Fig. 13 depicts an architecture for advanced detection and prognosis. In this architecture, 
sensor measurements and operational parameters are input in real time. Data is pre-processed 
to reduce the effect of noise, before computing condition indicators or features indicative of a 
component’s health. Using the enhanced features as described earlier and a model describing 
the component’s degrading state [7], fault detection and failure prognostic algorithms based 
on particle filtering are applied [8]. Statistical analysis is implemented to evaluate the 
probability of a fault being present. When the fault is detected with a given confidence level, 
the prognostic algorithm is activated to predict the remaining useful life (RUL) of the 
component. This architecture provides not only a convenient compromise between data-
driven and model-based techniques, but also the means to evaluate performance with 
statistical indices [7]. 
 
It is possible to provide an example of the effectiveness of this approach using the surrogate 
bearing data set, where the fault size (ground truth) is available for baseline conditions and 
different spall sizes. Interpolating available data, we can estimate the expected feature values 
corresponding to different fault sizes and generate a feature progression curve as shown in 
Fig. 14. 
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Fig. 13: Proposed architecture for the integration of diagnostics and prognostics. 
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Fig. 14: Interpolation of fault dimension according to feature values. 

 
Since the data is interpolated in terms of minutes, the RUL expectation and 95% confidence 
interval are also given in minutes. Long-term predictions are provided after fault is detected 
and using the current estimate for the state pdf as initial condition. Results are depicted in Fig. 
15 through Fig. 17. 
 
Fig. 15 shows the minute at which the fault is detected. Before this time instant, the 
prognostic routines are disabled. As soon as the fault is detected, the pdf estimates at that time 
are used as the initial conditions for the prognostic routines, as shown in Fig. 16. When a new 
measurement comes in, the prognostic algorithms will provide an estimate of the remaining 
useful life. Fig. 17 shows the result at the 350th minute. 
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Fig. 15: Diagnostic result when a fault is detected. 
 

 

 
 

Fig. 16: Initial prognostic estimation right after the fault is first detected. 
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Fig. 17: Failure prognosis at the 350th minute of bearing operation. 
 

 
Conclusion 

 
This paper shows that enhancements to diagnostic techniques are desirable as well as 
attainable additions to Digital Source Collectors (DSC), particularly in the case of rotorcraft 
component monitoring. Enhancements like those presented support CBM efforts primarily in 
two ways: reduce the sensitivity of diagnostic processes to both signal noise and variations in 
environmental and operating conditions, and improve the performance of detection systems as 
well as the task of fault identification (e.g., severity quantification) towards the instantiation 
of reliable prognostics. 
 
Representative examples, motivated by the interest of the U.S. Army in transitioning from 
time-based (using TBO definitions) to condition-based maintenance for an H-60 drive train 
bearing, illustrates the potential benefits of pursuing an integrated approach to diagnostics and 
prognostics, combining technologies for enhanced data pre-processing, advanced diagnostic-
support algorithms, fusion at the feature level, and an adequate framework for false alarm 
mitigation and uncertainty management. Sensor level fusion techniques did not offer 
improvements in signal characteristics with the examples used, but the data set was very 
limited, and this aspect of the work is ongoing.  A series of tests on rotorcraft drive train 
bearings with varying fault severities and under multiple, though realistic, operating 
conditions are currently being planned, with the objective of providing additional data to 
demonstrate the effectiveness of the proposed data processing techniques and assessing the 
performance of related diagnostic and prognostic algorithms, with aim to support the U.S. 
Army’s maintenance objectives by providing technologies that make detection systems more 
robust, allow for the implementation of prognostics, and extend the useful life of drive train 
components.  
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